聚创考研网官方联系电话
聚创考研网 > 考研院校库 > 厦门大学 > 导师介绍 > 正文

厦门大学材料学院导师介绍:彭栋梁

作者:聚创厦大考研网-小黑老师 点击量: 2195 发布时间: 2018-09-04 16:44 【微信号:13306030226】



  姓名:彭栋梁
  职称:教授、博士生导师
  电话:0592-2180155
  传真:0592-2183515
  邮箱:dlpeng@xmu.edu.cn
  个人简历
  彭栋梁教授,理学和工学博士,博士生导师,现任厦门大学材料学院院长。国家杰出青年科学基金获得者,国家重点研发计划“纳米专项”项目首席科学家,福建省“闽江学者”特聘教授,“福建省百千万人才工程”入选者,2015-2017年度福建省优秀教师,“福建省科技创新领军人才”入选者。中国材料研究学会理事会理事,中国电子学会应用磁学分会委员会委员,中国金属学会材料科学分会委员会委员,中国材料研究学会纳米材料与器件分会理事会理事,Steering Committee Member of the International Conference on Fine Particle Magnetism (2012.6--至今),Journal of Materials Science: Materials in Electronics杂志编辑,《Scientific Reports》、《金属功能材料》和《功能材料》等杂志编委会委员。
  工作经历:
  1983年7月-1995年9月兰州大学物理系助教、讲师、副教授
  1998年1月-2001年11月日本东北大学-日本文部科学省科学技术振兴事业团研究员
  2001年12月-2003年11月日本名古屋工业大学-日本文部科学省日本学术振兴会(JSPS) 特别研究员
  2003年12月-2005年3月日本名古屋工业大学材料科学与工程系 高级研究员
  2005年4月-2006年3月日本名古屋工业大学材料科学与工程系 副教授
  2005年12月-至今厦门大学材料科学与工程系 教授、博士生导师、闽江学者特聘教授
  教育经历:
  1983年6月兰州大学物理系本科毕业,获理学学士学位
  1989年6月兰州大学物理系固体物理专业硕士研究生毕业,获理学硕士学位
  1993年9月兰州大学物理系凝聚态物理专业,博士研究生入学
  1995年10月-1997年10月作为中国和日本联合培养博士生在日本东北大学金属材料研究所留学
  1997年12月兰州大学物理系凝聚态物理专业博士研究生毕业,获理学博士学位
  2002年3月再获日本名古屋工业大学材料科学与工程专业 ,获工学博士学位
  研究领域
  磁性材料与自旋电子学、能源材料、纳米和低维功能材料、光电材料、硬质薄膜和涂层材料
  主要科研成果
  先后承担了多项有关薄膜功能材料和纳米材料的科研项目,包括主持国家重点研发计划项目、国家杰出青年科学基金、国家重大科学研究计划课题(973计划)、国家科技支撑计划课题、国家自然科学基金等科研项目。已在ACS Nano、Adv. Funct. Mater.、Chem. Soc. Rev.、Applied Physics Letters、Phys. Rev. B、Small、Nanoscale、Journal of Materials Chemistry、ACS Applied Materials & Interfaces、Journal of Power Sources、Electrochimica Acta、Appl. Catal. B: Environ.等国际国内著名学术刊物上共发表科研论文240多篇,其中SCI收录论文220多篇。论文被包括Nature,Science在内的SCI论文引用3600多次。受邀参编美国科学出版社出版的《Encyclopedia of Nanoscience and Nanotechnology》。已授权日本发明专利6项,授权中国发明专项9项。
  主要代表学术论著与论文
  (1) L. Lin, Y. Ma, Q. S. Xie*, L. S. Wang, Q. Zhang, and D. L. Peng*, “Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries”, ACS Nano, 11 (2017) 6893-6903.
  (2) Q. S. Xie, P. Liu, D. Zeng, W. Xu, L. S. Wang, Z. Z. Zhu, L. Mai, and D. L. Peng*, “Dual Electrostatic Assembly of Graphene Encapsulated Nanosheet-Assembled ZnO-Mn-C Hollow Microspheres as a Lithium Ion Battery Anode”, Adv. Funct. Mater., 2018, DOI: 10.1002/adfm.201707433.
  (3) Q. S. Xie, Y. Ma, X. Wang, D. Zeng, L. S. Wang, L. Mai, and D. L. Peng*, “Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties”, ACS Nano, 10 (2016) 1283-1291.
  (4) J. Huang, Y. Ma, Q. S. Xie,* H. Zheng, J. Yang, L. S. Wang, and D. L. Peng*, “3D Graphene Encapsulated Hollow CoSnO3 Nanoboxes as a High Initial Coulombic Efficiency and Lithium Storage Capacity Anode”, Small, 14 (2018) 1703513.
  (5) X. Liu, L. S. Wang*, Y. Ma, H. Zheng, L. Lin, Q. Zhang, Y. Chen, Y. Qiu, and “Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band”, ACS Appl. Mater. Interfaces, 9 (2017) 7601.
  (6) Q. F. Zhang, H. Zheng, L. S. Wang, A. Su, X. Liu, J. Xie, Y. Z. Chen, and D. L. Peng*, “Influence of surface and interface modification on the electrical transport behaviors in Co@Cu nanocomposite films”, J. Magn. Magn. Mater., DOI: 10.1016/jmmm.2018.03.057.
  (7) Q. F. Zhang, L. S. Wang*, X. Wang, H. Zheng, X. Liu, J. Xie, Y. Qiu, Y. Chen, and D. L. Peng*, “Electrical transport properties in Co nanocluster-assembled granular film”, J. Appl. Phys., 121 (2017) 103901.
  (8) D. Zeng, P. Gong, Y. Chen*, Q. F. Zhang, Q. S. Xie, and D. L. Peng*, “Colloidal synthesis of Cu–ZnO and Cu@CuNi–ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties”, Nanoscale, 8 (2016) 11602-11610.
  (9) J. B. Wang, W. B. Mi, L. S. Wang, D. Q. Zeng, Y. Z. Chen, and D. L. Peng*, “Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films”, J. Magn. Magn. Mater., 401 (2016) 30-37.
  (10) J. B. Wang, W. B. Mi, L. S. Wang, and D. L. Peng*, “Interfacial-scattering-induced enhancement of the anomalous Hall effect in uniform Fe nanocluster-assembled films”, Europhysics Letters, 109 (2015) 17012.
  (11) M. B. Gawande*, A. Goswami, T. Asefa, H. Guo, A. V. Biradar, D. L. Peng, R. Zboril*, and R. S. Varma*, “Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis”, Chem. Soc. Rev., 44 (2015) 7540-7590.
  (12) Q. S. Xie, Y. Ma, D. Zeng, L. S. Wang, G. H. Yue, and D. L. Peng*, “Facile fabrication of various zinc-nickel citrate microspheres and their transformation to ZnO-NiO hybrid microspheres with excellent lithium storage properties”, Scientific Reports, 5 (2015) 08351.
  (13) Y. Chen*, D. Zeng, M. B. Cortie, A. Dowd, H. Guo, J. B. Wang, D. L. Peng*, Seed-Induced Growth of Flower-Like Au-Ni-ZnO Metal-Semiconductor Hybrid Nanocrystals for Photocatalytic Applications, Small, 11 (2015) 1460-1469.
  (14) D. Zeng, Y. Chen,* Z. Wang, J. B. Wang, Q. S. Xie and D. L. Peng*, “Synthesis of Ni–Au–ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity”, Nanoscale, 7 (2015) 11371-11378.
  (15) X. L. Liu, L.S. Wang*, R. Xu, Q. Luo, L. Xu, B. B. Yuan, C. Y. Zou, J. B. Wang, and D. L. Peng*, “Influence of total film thickness on high-frequency magnetic properties of the [FeCoSiN/SiNx]n multilayer thin films”, J. Magn. Magn. Mater., 374 (2015) 85-91.
  (16) L.S. Wang, S.J. Nie, J.B. Wang, L. Xu, B.B. Yuan, X.L. Liu, Q. Luo, Y. Chen, G.H. Yue, D. L. Peng*, “Effect of experiment parameters on the structure and magnetic properties of NiZn-ferrite films”, Materials Chemistry and Physics, 160 (2015) 321-328.
  (17) X. Liu, H. Z. Guo, Q. S. Xie, Q. Luo, L. S. Wang*, D. L. Peng*, “Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials”, Journal of Alloys and Compounds, 649 (2015) 537-543.
  (18) Y. Ma, Q. S. Xie, X. Liu, Y. Zhao, D. Zeng, L. S. Wang, Y. Zheng, and D. L. Peng*, “Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries”, Electrochimica Acta, 182 (2015) 327-333.
  (19) Q. S. Xie, D. Zeng, Y. T. Ma, L. Lin, L. S. Wang, and D. L. Peng*, “Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties”, Electrochimica Acta, 169 (2015) 283-290.
  (20) A. Lu, X. Zhang, Y. Chen*, Q. S. Xie, Q. Qi, Y. Ma, and D. L. Peng*, “Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries”, Journal of Power Sources, 295 (2015) 329-335.
  (21) D. Zeng, Y. Chen*, J. Peng, Q. S. Xie, and D. L. Peng*, “Synthesis and photocatalytic properties of multi-morphological AuCu3–ZnO hybrid nanocrystals”, Nanotechnology, 26 (2015) 415602.
  (22) H. Z. Guo, X. Liu, C. Bai, Y. Chen*, L. S. Wang, M. Zheng, Q. Dong, and D. L. Peng*, “Effect of Component Distribution and Nanoporosity in CuPt Nanotubes on Electrocatalysis of the Oxygen Reduction Reaction”, ChemSusChem, 8 (2015) 486-494.
  (23) J. B. Wang, W. B. Mi, L. S. Wang, Q. F. Zhang, and D. L. Peng*, “Enhanced anomalous Hall effect in Fe nanocluster assembled thin films”, Phys. Chem. Chem. Phys., 16 (2014) 16623.
  (24) M. Li, Y. Chen*, N. Ji, D. Zeng, and D. L. Peng*, “Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices”, Materials Chemistry and Physics, 147 (2014) 604-610.
  (25) J. B. Wang, L. S. Wang, H. Z. Guo, M. Lei, Q. F. Zhang, G. H. Yue, Y. Chen, and D. L. Peng*, “Structural and magnetic properties of Fe65Co35@Ni0.5Zn0.5Fe2O4 composite thin films prepared by a novel nanocomposite technology”, J. Alloys Compd., 608 (2014) 323–328.
  (26) R. Xu, L. S. Wang*, X. L. Liu, M. Lei, H. Z. Guo, Y. Chen, J. B. Wang, and D.L. Peng*, “Influence of substrate temperature on high-frequency soft magnetic properties of [Fe80Ni20–O/NiZn–ferrite]n multilayer thin films”, J. Alloys Compd., 604 (2014) 43–49.
  (27) A. L. Lu, Y. Chen*, H. Li, A. Dowd, M. B. Cortie, Q. S. Xie, H. Z. Guo, Q. Q. Qi, and D. L. Peng*, “Magnetic Metal Phosphide Nanorods as Effective Hydrogen-Evolution Electrocatalysts”, Int. J. Hydrogen Energy, 9(2014)18919-18928.
  (28) H. Z. Guo, X. Liu, Y. Hou, Q. S. Xie, L. S. Wang, H. Geng, and D. L. Peng*, “Magnetically Separable and Recyclable Urchin-Like Co-P Hollow Nanocomposites for Catalytic Hydrogen Generation”, J. Power Sources, 260 (2014) 100-108.
  (29) Q. S. Xie, Y. T. Ma, X. Q. Zhang, H. Z. Guo, A. L. Lu, L. S. Wang, G. H. Yue, and D. L. Peng*, “Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries”, Electrochimica Acta, 141 (2014) 374–383.
  (30) Q. S. Xie, Y. T. Ma, D. Zeng, X. Q. Zhang, L. S. Wang, G. H. Yue, and D. L. Peng*, “Hierarchical ZnO-Ag-C Composite Porous Microspheres with Superior Electrochemical Properties as Anode Materials for Lithium Ion Batteries”, ACS Applied Materials & Interfaces, 6 (2014) 19895-19904.
  (31) Q. S. Xie, Y. Zhao, H. Z. Guo, A. L. Lu, X. X. Zhang, L. S. Wang, M. S. Chen, and D. L. Peng*, “Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation”, ACS Applied Materials & Interfaces, 6 (2014) 421-428.
  (32) H. Z. Guo, Y. Chen*, M. B. Cortie, X. Liu, Q. S. Xie, X. Wang, and D. L. Peng*, “Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties”, J. Phys. Chem. C, 118 (2014) 9801?9808.
  (33) Q. S. Xie, X. Q. Zhang, X. Wu, H. Wu, X. Liu, G. H. Yue, Y. Yang, and D. L. Peng*, Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries, Electrochimica Acta, 125(2014) 659–665
  (34) A. L. Lu, Y. Chen*, D. Q. Zeng, M. Li, Q. S. Xie, X. X. Zhang, and D. L. Peng*, “Shaperelated optical and catalytic properties of wurtzitetype CoO nanoplates and nanorods”, Nanotechnology, 25 (2014) 035707.
  (35) Y. Chen*, D. Q. Zeng, K. Zhang, A. L. Lu, L. S. Wang, and D. L. Peng*, “Au–ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties”, Nanoscale , 6 (2014) 874–881.
  (36) D. Zeng, Y. Chen,* A. Lu, M. Li, H. Guo, J. Wang, and D. L. Peng*, “Ni-Cu@Au-Cu nanowires with tunable magnetic and plasmonic properties: nonaqueous injection synthesis and characterization”, Chem. Commun., 49(2013)11545-11547.
  (37) H. Guo, N. Lin, Y. Chen, Z. W. Wang, Q. S. Xie, T. C. Zheng, N. Gao, S. P. Li, J. Y. Kang, D. J. Cai, and D. L. Peng*, “Copper Nanowires as Fully Transparent Conductive Electrodes”, Scientific Reports, 3 (2013) 02323.
  (38) H. Guo, Y. Chen, H. Ping, J. Jin, and D. L. Peng*, “Facile Synthesis of Cu and Cu@Cu-Ni Nanocubes and Nanowires in Hydrophobic Solution in the Presence of Nickel and Chlorine Ions”, Nanoscale, 5(2013)2394-2402.
  (39) Q. S. Xie, F. Li, H. Guo, L. S. Wang, Y. Chen, G. H. Yue, and D. L. Peng*, “Template-Free Synthesis of Amorphous Double-Shelled Zinc–Cobalt Citrate Hollow Microspheres and Their Transformation to Crystalline ZnCo2O4 Microspheres”, ACS Applied Materials & Interfaces, 5(2013) 5508-5517.
  (40) X. X. Zhang, Q. S. Xie, G. H. Yue*, Y. Zhang, X. Q. Zhang, A. L. Lu, and D. L. Peng*, “A novel hierarchical network-like Co3O4 anode material for lithium batteries”, Electrochimica Acta, 111(2013)746-754.
  (41) X. Liu, Y. Chen, L. S. Wang, and D. L. Peng*, “Transition from paramagnetism to ferromagnetism in HfO2 nanorods”, J. Appl. Phys., 113(2013)076102.
  (42) Y. Wang, H. Geng, J. B. Wang, S. Nie, L. S. Wang, Y. Chen, and D. L. Peng*, “Magnetic properties of [Fe65Co35-O/SiO2]n multilayer thin films for high-frequency application”, Applied Physics A, 111(2013)569–574.
  (43) H. Geng, J. Q. Wei, S. J. Nie, Y. Wang, Z. W. Wang, L. S. Wang, Y. Chen, D. L. Peng*, F. S. Li, and D. S. Xue, “[Fe80Ni20-O/SiO2]n multilayer thin films for applications in GHz range”, Materials Letters, 92(2013)346-349.
  (44) H. Guo, Y. Chen*, H. Ping, L. S. Wang, and D. L. Peng*, “One-Pot Synthesis of Hexagonal and Triangular Nickel-Copper Alloy Nanoplates and Their Magnetic and Catalytic Properties”, J. Mater. Chem., 22(2012)8336-8344. (IF=5.968)
  (45) H. She, Y. Chen*, X. Chen, K. Zhang, Z. Wang, and D. L. Peng*, “Structure, optical and magnetic properties of Ni@Au and Au@Ni nanoparticles synthesized via non-aqueous approaches”, J. Mater. Chem., 22(2012)2757-2765. (IF=5.968)
  (46) A. Lu, Y. Chen, J. Jin, G. H. Yue, and D. L. Peng*, “CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride”, J. Power Sources, 220(2012)391-398. (IF=4.951)
  (47) H. Geng, Y. Wang, J. B. Wang, Z. Q. Li, S. J. Nie, L. S. Wang, Y. Chen, D. L. Peng*, “Method to improve high-frequency magnetic characteristics of Fe80Ni20-O alloy films by introducing low-dose oxygen”, Materials Letters 67 (2012) 99–102.
  (48) L.S. Wang, S.J. Liu, H.Z. Guo, Y. Chen, G.H. Yue, D. L. Peng*, T. Hihara, and K. Sumiyama, “Preparation and characterization of the ZnO:Al/Fe65Co35/ZnO:Al multifunctional films”, Applied Physics A, 106(2012)717–723.
  (49) H. Guo, Y. Chen, X. Chen, R. Wen, G. H. Yue, and D. L. Peng*, “Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen”, Nanotechnology, 22 (2011) 195604.
  (50) L.S. Wang, R.T. Wen, Y. Chen, G.H. Yue, D.L. Peng*, and T. Hihara, “Gas-phase preparation and size control of Fe nanoparticles”, Applied Physics A, 103 (2011) 1015-1020.
  (51) K. Zhang, L.S. Wang, G.H. Yue, Y.Z Chen, D. L. Peng*, Z.B. Qi, and Z.C. Wang, “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings”, Surf. Coat. Tech., 205 (2011) 3588-3595.
  (52) H. She, Y. Chen*, R. Wen, K. Zhang, G. H. Yue, D. L. Peng*, “A nonaqueous approach to the preparation of iron phosphide nanowires”, Nanoscale Res. Lett., 5 (2010) 786-790.
  (53) W. Wang Y. Chen, G.H. Yue, K. Sumiyama, T. Hihara, D. L. Peng*, “Magnetic softness and high-frequency characteristics of Fe65Co35-O alloy films”, J. Appl. Phys., 106 (2009) 013912.
  (54) L.S. Wang, G.H. Yue, Y.Z. Chen, R.T. Wen, X. Wang. D.L. Peng*, “Synthesis and characterization of ferromagnetic transparent conductive films”, Mater. Chem. Phys., 117 (2009) 224-227.
  (55) Y. Chen, X. Luo, X. Luo, and D. L. Peng*, “The synthesis of iron-nickel nanoparticles via a nonaqueous organometallic route”, Materials Chemistry and Physics, 113 (2009) 412-416.
  (56) D. L. Peng*, K. Sumiyama, K. Kumagai, T. Yamabuchi, D. Kobayashi, and T. Hihara, “Magnetic and electrical characteristics in dense Fe-Ni alloy cluster-assembled films prepared by energetic cluster deposition”, Journal of Materials Research, 23 (2008) 189-197.
  (57) Y. Chen, D. L. Peng*, D. Lin and X. Luo, “Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines”, Nanotechnology, 18 (2007) 505703.
  (58) D. L. Peng*, H. Yamada, K. Sumiyama, T. Hihara and K. Kumagai, “Soft magnetic property and magnetic exchange correlation in high-density Fe-Co alloy cluster-assemblies”, J. Appl. Phys., 102 (2007) 033917-1--033917-6.
  (59) S. Yamamuro, K. Yamamoto, D. L. Peng, T. Hirayama, and K. Sumiyama, “Random dipolar ferromagnetism in Co/CoO core-shell cluster assemblies observed by electron holography”, Appl. Phys. Lett., 90 (2007) 242510--242510-3.
  (60) R. Katoh, T. Hihara, D. L. Peng, and K. Sumiyama, “Magnetic and electrical properties of Fe/Si core-shell cluster assemblies prepared with double glow discharge sources”, Appl. Phys. Lett., 87 (2005) 252501-1--252501-3.
  (61) D. L. Peng*, H. Yamada, T. Hihara T. Uchida, and K. Sumiyama, “Dense Fe cluster-assembled films by energetic cluster deposition”, Appl. Phys. Lett., 85 (2004) 2935-2937.
  (62) D. L. Peng*, T. Hihara and K. Sumiyama, “Formation and magnetic properties of Fe-Pt alloy clusters by plasma-gas condensation”, Appl. Phys. Lett., 83 (2003) 350-352.
  (63) R. Katoh, T. Hihara, D. L. Peng, and K. Sumiyama, “Composite deposition of Co and Si clusters by rf/dc plasma-gas-condensation”, Appl. Phys. Lett., 82 (2003) 2688-2690.
  (64) D. L. Peng*, T. Asai, N. Nozawa, T. Hihara and K. Sumiyama, “Magnetic properties and magnetoresistance in small iron oxide cluster assemblies”, Appl. Phys. Lett., 81 (2002) 4598-4600.
  (65) D. L. Peng*, T. Hihara, K. Sumiyama and H. Morikawa, “Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies”, J. Appl. Phys., 92 (2002) 3075-3083.
  (66) D. L. Peng*, T. J. Konno, K. Wakoh, T. Hihara and K. Sumiyama, “Co cluster coalescence behavior observed by electrical conduction and transmission electron microscopy”, Appl. Phys. Lett., 78 (2001) 1535-1537.
  (67) D. L. Peng*, K. Sumiyama, T. Hihara, S. Yamamuro and T. J. Konno, “Magnetic properties of monodispersed Co/CoO cluster assemblies”, Phys. Rev. B, 61 (2000) 3103-3109.
  (68) D. L. Peng*, K. Sumiyama, T. Hihara and S. Yamamuro, “Enhancement of magnetic coercivity and macroscopic quantum tunneling in monodispersed Co/CoO cluster assemblies”, Appl. Phys. Lett., 75(1999)3856-3858.
  (69) D. L. Peng, K. Sumiyama, S. Yamamuro, T. Hihara and T. J. Konno, “Characteristic Tunnel-type Conductivity and Magnetoresistance in a CoO-coated Monodispersive Co Cluster Assembly”, Appl. Phys. Lett., 74 (1999) 76-78.
  (70) D. L. Peng*, K. Sumiyama, T. J. Konno, T. Hihara and S. Yamamuro, “Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies”, Phys. Rev. B, 60 (1999) 2093-2100.


以上是聚创厦大考研网为考生整理的"厦门大学材料学院导师介绍:彭栋梁"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信juchuang911进行咨询。

免责声明:本网站发表的部分公开资料来源于互联网,目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责。聚创考研网尊重版权,如有侵权问题,请及时联系(WX:juchuang911)

聚创考研网官方微信
分享:
学习QQ群
MORE
浏览记录
MORE
浏览过该网页的还看了 MORE
  • 24考研复试大纲及其流程解析

  • 【准大三】考研院校专业选择揭秘

  • 24考研调剂全流程解析