聚创考研网官方联系电话
聚创考研网 > 备考指导 > 考研公共课 > 考研英语 > 正文

2024考研英语:《经济学人》中英读译Day158

作者:聚创考研网-王老师 点击量: 586 发布时间: 2023-08-15 09:17 【微信号:13306030226】


英语阅读能力依靠什么?必然是词汇的积累,但,仅仅是词汇的积累是不够了,更应该了解英语句式,不同句型所表达意义。如何培养自己的阅读语感呢?那么就跟着聚创考研网小编每天学一点英语,一起为考研筑起坚实的地基。阅读是需要积累的,就像我们需要经常和人沟通才会促进我们的表达能力一样~小伙伴跟着小编一起,每天坚持打卡,培养英语阅读能力及语感,了解文章一些经典词汇的用法。


经济学人:新的联想学习模型与其对人工智能的影响(上)


A model of learning that is decades-old is under fire with implications for AI.The buzz of a notification or the ding of an email might inspire excitement - or dread.In a famous experiment, Ivan Pavlov showed that dogs can be taught to salivate at the tick of a metronome or the sound of a harmonium.This connection of cause to effect - known as associative, or reinforcement learning - is central to how most animals deal with the world.Since the early 1970s the dominant theory of what is going on has been that animals learn by trial and error.Associating a cue (a metronome) with a reward (food) happens as follows.When a cue comes, the animal predicts when the reward will occur.Then, it waits to see what arrives.

译文

一种已有数十年历史的学习模式正受到抨击,并对人工智能产生影响。通知的嗡嗡声或电子邮件的叮当声可能会让人们感到兴奋或恐惧。伊万·巴甫洛夫进行的一项著名实验证明,通过学习,狗会因为节拍器的滴答声或铃声流口水。这种因果关系——被称为联想学习,或强化学习——是大多数动物行为的核心。自20世纪70年代初以来,关于这种因果关系存在一种主要理论,认为动物的学习行为是通过尝试与错误实现的。将信号(节拍器)与奖励(食物)相关联的过程如下。信号出现时,动物会预测奖励何时出现。然后,它会等待接下来发生的事件。


After that, it computes the difference between prediction and result - the error.Finally, it uses that error estimate to update things to make better predictions in future.Belief in this approach was itself reinforced in the late 20th century by two things.One of these was the discovery that it is also good at solving engineering problems related to artificial intelligence (AI).Deep neural networks learn by minimizing the error in their predictions.The other reinforcing observation was a paper published in Science in 1997.It noted that fluctuations in levels in the brain of dopamine, a chemical which carries signals between some nerve cells and was known to be associated with the experience of reward, looked like prediction-error signals.Dopamine-generating cells are more active when the reward comes sooner than expected or is not expected at all, and are inhibited when the reward comes later or not at all - precisely what would happen if they were indeed such signals.A nice story, then, of how science works.But if a new paper, also published in Science, turns out to be correct, it is wrong.

译文

之后,它会计算预测和结果(误差)之间的不同。最后,它利用误差估计进行调整,以便在未来做出更好的预测。20世纪末,有两件事加强了人们对这种方法的信任。其中之一,是人们发现这种方法也能够有效解决与人工智能(AI)相关的工程问题。深度神经网络是以将预测误差最小化为依据的一种机器学习技术。另一件事是1997年发表在《科学》杂志上的一篇论文。这篇论文指出,大脑中多巴胺水平的波动看起来像是预测-误差的信号。多巴胺是一种在神经细胞之间传递信号的化学物质,与大脑的奖励机制有关。如果奖励比预期来得更早或超出预期,产生多巴胺的细胞会更活跃,而如果奖励来得更晚或根本没有奖励,产生多巴胺的细胞就会受到抑制——如果这些细胞真的是信号,这就是大脑中会发生的事情。这是一个关于科学如何运作的好故事。但是,如果同样发表在《科学》杂志上的一篇新论文被证明是正确的,那么它就是错误的。


Researchers have known for a while that some aspects of dopamine activity are inconsistent with the prediction-error model.But, in part because it works so well for training artificial agents, these problems have been swept under the carpet.Until now.The new study, by Huijeong Jeong and Vijay Namboodiri of the University of California, San Francisco, and a team of collaborators, has turned the world of neuroscience on its head.It proposes a model of associative learning which suggests that researchers have got things backwards.Their suggestion, moreover, is supported by an array of experiments.The old model looks forward, associating cause with effect.The new one does the opposite.It associates effect with cause.They think that when an animal receives a reward (or punishment), it looks back through its memory to work out what might have prompted this event.Dopamine's role in the model is to flag events meaningful enough to act as causes for possible future rewards or punishments.

译文

研究人员早就发现,多巴胺活动的某些方面与预测-误差模型不一致。但是,因为它在训练人工智能方面效果太好,这些问题在某种程度上被掩盖了。直到现在。由加州大学旧金山分校的郑慧贞和维贾伊·南博迪里以及一个合作团队完成的这项新研究,彻底颠覆了神经科学世界。这项研究提出了一个联想学习模型,认为研究人员把事情搞反了。此外,他们的新想法还得到了一系列实验的支持。之前的学习模型着眼于未来,用原因推断结果。而新的学习模型正好相反。它用结果反推原因。他们认为,当一只动物受到奖励(或惩罚)时,它会回顾自己的记忆,找出可能导致这一事件的原因。多巴胺在该模型中的作用是标记足够有意义的事件,作为未来可能获得奖励或惩罚的原因。


以上是聚创考研网为考生整理的"2024考研英语:《经济学人》中英读译Day158"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信juchuang911进行咨询。

免责声明:本网站发表的部分公开资料来源于互联网,目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责。聚创考研网尊重版权,如有侵权问题,请及时联系(WX:juchuang911)

聚创考研网官方微信
分享:

学习QQ群
MORE
浏览记录
MORE
浏览过该网页的还看了 MORE
  • 24考研复试大纲及其流程解析

  • 【准大三】考研院校专业选择揭秘

  • 24考研调剂全流程解析