聚创考研网官方联系电话
聚创考研网 > 备考指导 > 考研公共课 > 考研英语 > 正文

2025考研英语:《经济学人》中英读译Day30

作者:聚创考研网-王老师 点击量: 769 发布时间: 2024-02-22 09:18 【微信号:13306030226】


英语阅读能力依靠什么?必然是词汇的积累,但,仅仅是词汇的积累是不够了,更应该了解英语句式,不同句型所表达意义。如何培养自己的阅读语感呢?那么就跟着聚创考研网小编每天学一点英语,一起为考研筑起坚实的地基。阅读是需要积累的,就像我们需要经常和人沟通才会促进我们的表达能力一样~小伙伴跟着小编一起,每天坚持打卡,培养英语阅读能力及语感,了解文章一些经典词汇的用法。


经济学人:人工智能机器中的魂灵


Talking about artificial intelligence in human terms is natural—but wrong.My love’s like a red, red rose.It is the east, and Juliet is the sun.Life is a highway, I wanna ride it all night long.Metaphor is a powerful and wonderful tool.Explaining one thing in terms of another can be both illuminating and pleasurable, if the metaphor is apt.But that “if” is important.Metaphors can be particularly helpful in explaining unfamiliar concepts: imagining the Einsteinian model of gravity (heavy objects distort space-time) as something like a bowling ball on a trampoline, for example.But metaphors can also be misleading: picturing the atom as a solar system helps young students of chemistry, but the more advanced learn that electrons move in clouds of probability, not in neat orbits as planets do.What may be an even more misleading metaphor—for artificial intelligence (AI)—seems to be taking hold.
译文

用谈论人的方式来谈论人工智能是很自然的,但这是错误的。我的爱人像一朵红红的玫瑰。那是东方,而朱丽叶就是太阳。人生如大路,我想彻夜飞驰其上。比喻是一种强大而奇妙的工具。如果比喻恰当的话,用一件事来解释另一件事既能带来启发,又令人感到愉悦。但这个如果很重要。在解释不熟悉的概念时,比喻尤其有用:例如,把爱因斯坦的重力模型(重物会扭曲时空)想象成蹦床上的保龄球。但比喻也可能具有误导性:把原子想象成一个太阳系有助于低年级化学学生的理解,但高年级的学生会了解到,电子在充满概率性的迷雾中运动,而不是像行星那样在规整的轨道上运动。一个可能更具误导性的比喻--对人工智能的比喻--似乎正在开始占上风。

 

AI systems can now perform staggeringly impressive tasks, and their ability to reproduce what seems like the most human function of all, namely language, has ever more observers writing about them.When they do, they are tempted by an obvious (but obviously wrong) metaphor, which portrays AI programmes as conscious and even intentional agents.After all, the only other creatures which can use language are other conscious agents—that is, humans.Take the well-known problem of factual mistakes in potted biographies, the likes of which ChatGPT and other large language models (LLMs) churn out in seconds.Incorrect birthplaces, non-existent career moves, books never written: one journalist at The Economist was alarmed to learn that he had recently died.In the jargon of AI engineers, these are “hallucinations”.In the parlance of critics, they are “lies”.“Hallucinations” might be thought of as a forgiving euphemism.Your friendly local AI is just having a bit of a bad trip; leave him to sleep it off and he’ll be back to himself in no time.

译文

人工智能系统现在可以执行极其令人惊艳的任务,语言似乎是最具人类本性的功能,而它们能够再次生成语言的这一能力让越来越多的观察家写下了关于它们的文章。当观察家们写这些文章时,他们会受到一个明显的(但明显错误的)比喻的诱惑,即将人工智能程序描述为有意识的、甚至是有意图的行为主体。毕竟,唯一能够使用语言的其他生物就是其他有意识的行为主体,也就是人类。以人物生平简介中的著名的事实性错误问题为例,ChatGPT和其他大型语言模型在短短几秒钟内就能炮制出这样的生平简介。错误的出生地、不存在的职业变动、从未写过的书:《经济学人》的一名记者很震惊地得知自己最近被去世了。用人工智能工程师的行话来说,这些都是幻觉。用批评者的用语说,这些是谎言幻觉可能被认为是一种带有宽恕性的委婉说法。你那友好的当地人工智能只是脑子发了点昏,让他睡一觉,他很快就会清醒过来的。

 

For the “lies” crowd, though, the humanising metaphor is even more profound: the AI is not only thinking, but has desires and intentions.A lie, remember, is not any old false statement.It is one made with the goal of deceiving others.ChatGPT has no such goals at all.Humans’ tendency to anthropomorphise things they don’t understand is ancient, and may confer an evolutionary advantage.If, on spying a rustling in the bushes, you infer an agent (whether predator or spirit), no harm is done if you are wrong.If you assume there is nothing in the undergrowth and a leopard jumps out, you are in trouble.The all-too-human desire to smack or yell at a malfunctioning device comes from this ingrained instinct to see intentionality everywhere.It is an instinct, however, that should be overridden when writing about AI.These systems, including those that seem to converse, merely take input and produce output.At their most basic level, they do nothing more than turn strings like 0010010101001010 into 1011100100100001 based on a set of instructions.Other parts of the software turn those 0s and 1s into words, giving a frightening—but false—sense that there is a ghost in the machine.

译文

然而,对于谎言派来说,这个拟人化的比喻有更深刻的含义:人工智能不仅在思考,而且有欲望和意图。请记住,谎言不只是任何虚假的陈述。而且还要以欺骗他人为目的。ChatGPT根本没有这样的目的。人类把自己不理解的东西拟人化的倾向自古有之,这可能会带来进化优势。如果在侦察到灌木丛沙沙作响时,你推断灌木丛里有一个行为主体(无论是捕食者还是鬼魂),如果你推断错了,也不会造成任何伤害。但如果你假定灌木丛里什么都没有,然后一只豹子跳了出来,那么你就有麻烦了。对出故障的设备拍打或大喊大叫的愿望是一种人之常情,这种愿望就来自于这种根深蒂固的本能,即随处可看见意图。然而,在写关于人工智能的文章时,这种本能应该被压倒。这些系统,包括那些似乎能与人对话的系统,只是接受了输入并产生输出。在最基本的层次上,它们只不过是根据一组指令,将0010010101001010之类的字符串转换为1011100100100001。软件的其他部分再将这些01转换为单词,给人一种可怕但错误的感觉:机器内部有一个魂灵。

 

Whether they can be said to “think” is a matter of philosophy and cognitive science, since plenty of serious people see the brain as a kind of computer.But it is safer to call what LLMs do “pseudo-cognition”.Even if it is hard on the face of it to distinguish the output from human activity, they are fundamentally different under the surface.Most importantly, cognition is not intention.Computers do not have desires.It can be tough to write about machines without metaphors.People say a watch “tells” the time, or that a credit-card reader which is working slowly is “thinking” while they wait awkwardly at the checkout.Even when machines are said to “generate” output, that cold-seeming word comes from an ancient root meaning to give birth.But AI is too important for loose language.If entirely avoiding human-like metaphors is all but impossible, writers should offset them, early, with some suitably bloodless phrasing.“An LLM is designed to produce text that reflects patterns found in its vast training data,” or some such explanation, will help readers take any later imagery with due scepticism.Humans have evolved to spot ghosts in machines.Writers should avoid ushering them into that trap.Better to lead them out of it.

译文

是否可以说它们在思考是哲学和认知科学上的问题,因为许多严肃的学者将大脑视为一种计算机。但将大型语言模型所做的事称为伪认知是更为安全的说法。即使表面上很难区分机器产出和人类活动,二者在表面之下是有根本区别的。最重要的是,认知不是意图。计算机没有愿望。描写机器时不用比喻会很困难。人们说手表会告诉时间,或者当人们在收银台尴尬地等待反应很慢的信用卡读卡器时,人们会说读卡器在思考。即使当人们说机器产生输出时,这个看起来冷冰冰的词其实也源于一个古老的词根,意思是生孩子。但人工智能太重要了,不能用不严谨的语言。如果完全避免拟人比喻几乎是不可能的,那么写作者们应该及早用一些恰当的冷血措辞来抵消比喻。大型语言模型用于生成文本,这种文本反映了从其海量训练数据中发现的模式,或某种类似的解释,这种说法将帮助读者对之后出现的任何意象持以适当的怀疑态度。人类通过进化而能够识别出机器中的魂灵。写作者应该避免将人们带入这个陷阱。不如带领他们走出陷阱。


以上是聚创考研网为考生整理的"2025考研英语:《经济学人》中英读译Day30"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信juchuang911进行咨询。

免责声明:本网站发表的部分公开资料来源于互联网,目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责。聚创考研网尊重版权,如有侵权问题,请及时联系(WX:juchuang911)

聚创考研网官方微信
分享:

学习QQ群
MORE
浏览记录
MORE
浏览过该网页的还看了 MORE
  • 24考研复试大纲及其流程解析

  • 【准大三】考研院校专业选择揭秘

  • 24考研调剂全流程解析