聚创考研网官方联系电话
聚创考研网 > 备考指导 > 考研公共课 > 考研数学 > 正文

考研数学:多元函数微分法定理汇总

作者:聚创考研网-小黑老师 点击量: 694 发布时间: 2016-06-17 15:48 【微信号:13306030226】


  【摘要】在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的多元函数微分法的定理定义汇总。

  
  极限存在条件
  ●极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)={0  (xy)/(x^2+y^2)  x^2+y^2≠0}

  连续性
  ●定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。

  ●性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

  ●性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。

  连续与可导
  ●如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。

  可微的必要条件
  ●一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

  可微的充分条件
  ●定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

  极值存在的必要、充分条件
  ●定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。

  ●定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:
  1、AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;
  2、AC-B2<0时没有极值;
  3、AC-B2=0时可能有也可能没有。

  多元函数极值存在的解法
  1、解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。
  2、对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C。
  3、定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
  注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。

 以上内容由聚英考研网整理发布。

  考研微信平台:聚英考研网(sxzykkaoyan)


以上是聚创考研网为考生整理的"考研数学:多元函数微分法定理汇总"的相关考研信息,希望对大家考研备考有所帮助! 备考过程中如有疑问,也可以添加老师微信juchuang911进行咨询。

免责声明:本网站发表的部分公开资料来源于互联网,目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责。聚创考研网尊重版权,如有侵权问题,请及时联系(WX:juchuang911)

聚创考研网官方微信
分享:

学习QQ群
MORE
浏览记录
MORE
浏览过该网页的还看了 MORE
  • 24考研复试大纲及其流程解析

  • 【准大三】考研院校专业选择揭秘

  • 24考研调剂全流程解析